Mechanobiology of bacterial
multicellularity

ME-480 Lecture 3




Lecture 3 outline

* Biofilms: what are they?
 The mechanics of biofilm formation
* Flow regulates biofilm architecture

* Biofilms generate force
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Biofiims are ubiquitous

e Biofilms are the main form of life of terrestrial microbes:
90% of the biomass

e Biofilms contains thousands to billons of bacteria

* They are very resilient against external chemical and
physical stresses.

* They’re a huge problem most of the time (in hospital and
industry)



The biofilm lifecycle
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The classic 3-step model

Sauer, Nat Rev Micro, 2022



Zooming in on the biofiim matrix

the extracellular polymeric substance (EPS) matrix is a cement for biofilms
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The advantages of living in a biofilm

the matrix has many beneficial physico-chemical properties

Localized Sorption Enzyme retention Cooperation Competition Tolerance and resistance
gradients
Provide habitat Resource External digestion Synergistic Continuous The biofilm as a fortress
diversity capture system micro-consortia regeneration
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Cellular heterogeneity in biofilms

Molecular transport define cellular landscape

a Metabolic substrate

Biofilm Fluid

Live dead stain of a Pseudomonas
aeruginosa biofilm




How do cells make EPS matrix?

Polysaccharide secretion systems

Alginate secretion system

Alginate PGA Cellulose




Single cells synchronize to build biofilms

* Single cells secrete signaling molecule (autoinducer)
 Autoinducer level depend on bacterial density

 Single cells sense autoinducer levels Quorum sensing regulates a breadth of
 Response is dependent on concentration collective phenotypes:
e virulence (patogenicity)
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Quorum sensing system

.= Target Genes For example: biofilm matrix



Biofilm architecture
Do bacteria build their biofiims randomly?

Do they know it’s time to form biofilm?
Do they choose where and when to secrete matrix?

* Does the biofilm aquire a specific architecture?



Vibrio cholerae as a model for biofiims




V. cholerae biofilms in the wild

Vibrio cholerae biofilms play a major role in pathogenicity
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maging biofilms in
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Confocal fluorescence microscopy
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Imaging live biofilms in 3D

Icrease imaging speed: spinning disk
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Pinhole

Beam Splitter

Objective Lens

source: Carl Zeiss Microscopy, Jena

Confocal fluorescence microscopy
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Coordination of matrix production

A precise spatial pattern

Vibrio produces 4 main matrix components Berk, Science 2012
e proteins: RomA, Bap1, RomC m—_
* polysaccharide: vps

fluorescently-labeled antibodies can be used to specifically
localize the diverse sticky EPS molecules

the three different secreted EPS are localized in space and time



RbmA (gray), RbmC (red), Bap1 (green) and cells (blue)



Imaging live biofilms in 3D

R

di-SPIM microscope (dual-view light sheet)



Single cell trajectores in growing biofilms




Single cells “flow” during morphogenesis

Fountain-like cellular flow

Trajectories Cellular flow field
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The building of biofilms

A fountain-like flow of bacterial cells drives biofilm expansion.

_— Cell trajectory

Cellular choreography
Biofilm expansion
balances growth with
friction between cells and
a surface. Interactions
between bacterial cells
and cell matrix
components mediate
cellular movement and
govern cell position fates.

Surface

1 Trapping

2 Fountaining 3 Expansion




Biofilm mechanics

Characterization

| T Growing consideration of the heterogeneonsness
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Bulk rheology of biofilms

storage modulus G’ (representative of the elastic, solid-like properties) and
the loss modulus G’ (representative of the viscous, fluid-like properties)

Above a critical strain, referred to as the yield strain €,
the biofilm starts to yield with a dramatic decrease in G’



Mechanical properties of matrix components

Matrix components have distinct functions

Yield stress

Yleld strain (elastic to plastic)

(elastic to plastic)
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Growing In an elastic material

Elastic material (matrix, mucus)

<+ | «——— Turgor pressure =——>»
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Biofilm-dwelling cells need to grow against the matrix
-> generates internal stress

Buckling
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Pressure sensing in biofiims

Pressure measurement in microchamber Gene expression measurement during self-induced compression
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Confined growth regulates expression of biofilm-associated genes



Forces on biofilims

Flow
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Adhesion force

How do mechanics contribute to biofilm morphogenesis?

Dufrene, Nat Rev Micro, 2020



Biofilms in the real world
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Soft epithelial cells

Dufréne and Persat,

Nat. Rev. Microbiology 2020

Do surface mechanics and flow regulate biofilm formation?



Biofiims In flow
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| just can't go with the flow anymore.
I've been thinking about joining a biofilm.



Vibrio cholerae biofilms

flow vs cell-cell cohesion
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Biofilm formation in flow

d
/"P-) "
l) ,~-
o1 \.KW \
_rap ) N 10 um
t=0-5h t=7h
7-56 cells 111 cells 1,105 cells 3,030 cells 6,748 cells
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(physics analogy with liquid crystals)
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Biofilm formation of WT* at low shear rate

Top view
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10 um
Shear rate: 2 s™ N =7 cells
Flow rate: 0.1 uL/min t=0.0h

Average flow velocity: 0.03 mm/s

Biofilm formation of WT* at high shear rate
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Flow rate: 100 pL/min t=0.0 h
Average flow velocity: 33 mm/s

Side view

Side view

Flow reorients bacteria
during biofilm formation



Biofilm formation of ArbmA mutant at low shear rate
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Caulobacter crescentus biofiims

C. crescentus division in flow C. crescentus curved shape
promotes biofilm formation in flow

flow

M 7’/0 | WT 2 surface
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Flow shapes colonization patterns
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NN

r
|
I
|
I
I
I
I
I
|
|
I
L

_.>

flow

Rossy et al., Nat. Com. 2019



Colonization dynamics in flow

00:00:00 00:00:00

10 pm 10 ym

2.5 mm.s 27/ mm.s-

Weak flow allows for reattachment of planktonic cells
Rossy et al., Nat. Com. 2019



Cellular advective-diffusion model
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Rossy et al., Nat. Com. 2019



Spatial organization of biofiims

/ Solitary cells
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W Lautropia B Prevotella
W Streptococcus Rothia

Veillonella ‘ Capnocytophaga Segregated lineages Mixed lineages
¥ Haemophilus/Aggregatibacter

Welch et al., PNAS 2016 Nadell et al., Nat Rev. Micro. 2016

Does cellular advective diffusion influence biofilm spatial organization?



Clonal mixing in flow

V —_ 1 mm.S-1 Vv — 7 mm_s-1 A% = 68 mm-s_1

Biofilms in flow, two clones:

WT C. crescentus mKate +
WT C. crescentus mVenus

Flow segregates colonal lineages
Rossy et al., Nat. Com. 2019



Biofiims in flow

 Flow shapes biofilm architecture
and surface colonization dynamics

* Flow regulates biofilm spatial
organization

> Impact on social interactions

ow

Rossy et al., Nat. Com. 2019



Biofilms on soft surfaces

T O

Soft epithelial cells

in vivo biofilms form
on soft materials ""'j; [p

Does surface stiffness regulate biofilm biogenesis?




Biofilms on synthetic hydrogels

Growth V. cholerae or
medium P. aeruginosa
o o
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Hydrogel film Vibrio cholerae

“rugose” strain



Biofilms deform soft substrates

. V. cholerae

I Hydrogel with
fluorescent particles



Deformations follow growth
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Deformation dynamics
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Threshold diameter suggests a buckling instability mechanism for deformation

Cont et al., eLife 2020



Buckling

9/\6 above critical

stress

How is the force generated?
Growth + cell-cell cohesion

— Internal stress

EPS matrix

(_C

Wang and Zhao,
Scirep 2015
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Biofilms generate a force on their substrate
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1. 3D timelapse imaging of tracers in hydrogel : :

2. image registration )

3. digitial volume correlation (DVC) bl
4. traction force microscopy '

\
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Bar-Kochba, Exp. Mech., 2014
github.com/FranckLab
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Growing biofilms “push” on the substrate

— Internal stress builds up in the biofilm, force is oriented radially



Biofilms generate large mechanical stress

Large internal stress transmitted
to substrate

Traction force (kPa)

~ MPa turgor pressure drives cell
growth within the matrix

Epithelial cell-cell junctions come apart under few kPa
— What happens in tissue?



The role of matrix components

Ve WT*

Cell-cell cohesion promotes

buildup of internal mechanical stress

— biofilm buckling

Biofilm-substrate adhesion helps

transmit buckling-induced stress to

substrate

— substrate deformation

Cont et al., eLife 2020



Biofiims on epithelia

a mechanical mode of infection

V. cholerae Biofilm

7 /

Epithelial cell
monolayer>a |

Soft extracellular matrix

Caco-2 uninfected

2 Biofilm

Delaminated

' gepithelium
-
o Mg,

ECM

Cont et al., eLife 2020



Mechanobiology in biofilims

summary

 Bacteria greatly benefit from forming multicellular structures

 The EPS matrix provides mechanical cohesion of the biofilm

e Single cells coordinate matrix patterning

 Each matrix component has a specific biomechanical function

e External stressor such as hydrodynamic forces influence biofilm architecture

 Mechanical stress within the biofilm has a strong impact on organization



